Calculus Early Transcendentals
                    
                
                
                    
                        
                        Contents
                        8: Techniques of Integration
                        8.1 Basic Integration Formulas
                        
                            
                            
                                | TABLE 8.1 Basic integration formulas | 
                            
                            
                                | $$\int{du}=u+C\tag{1}$$ | 
                            
                            
                                | $$\int{k \;du}=k u+C \quad\text{(any number k)} \tag{2}$$ | 
                            
                            
                                | $$\int{du + dv}=\int{du} +\int{dv} \tag{3}$$ | 
                            
                            
                                | $$\int{u^n du}=\frac{u^{n+1}}{n+1} +C \quad (n\neq -1)\tag{4}$$ | 
                            
                            
                                | $$\int{\frac{du}{u}}=ln |u| +C \tag{5}$$ | 
                        
                        8.4 Trigonometric Integrals
                        Products of Powers of Sines and Cosines
                        We begin with integrals of the form:
                        $$\int sin ^m x cos ^n x dx$$
                        where 
m and 
n are nonnegative integers (positive or zero). We can divide the work into
                        three cases.
                        
Case 1 If 
m is odd, we write 
m as 
2k + 1 and use the identity sin
2x = 1 - cos
2x to obtain
                        $$sin ^m x= sin ^{2k+1} x = (sin ^2 x)^k sin x = (1-cos^2 x)^ksinx \tag{1}$$
                        Then we combine the single 
sin x with 
dx in the integral and set 
sin x dx equal to 
-d(cos x).
                        
Case 3 If both 
m and 
n are even in ∫ sin 
m x cos 
n x dx, we sustitute
                        $$sin ^2 x = \frac{1-cos 2x}{2} , \; cos ^2 x = \frac{1+cos 2x}{2}\tag{2}$$
                        to reduce teh integrand to one in lower powers of cos 2x.