Calculus Early Transcendentals
Contents
8: Techniques of Integration
8.1 Basic Integration Formulas
TABLE 8.1 Basic integration formulas
|
$$\int{du}=u+C\tag{1}$$
|
$$\int{k \;du}=k u+C \quad\text{(any number k)} \tag{2}$$
|
$$\int{du + dv}=\int{du} +\int{dv} \tag{3}$$
|
$$\int{u^n du}=\frac{u^{n+1}}{n+1} +C \quad (n\neq -1)\tag{4}$$
|
$$\int{\frac{du}{u}}=ln |u| +C \tag{5}$$
|
8.4 Trigonometric Integrals
Products of Powers of Sines and Cosines
We begin with integrals of the form:
$$\int sin ^m x cos ^n x dx$$
where
m and
n are nonnegative integers (positive or zero). We can divide the work into
three cases.
Case 1 If
m is odd, we write
m as
2k + 1 and use the identity sin
2x = 1 - cos
2x to obtain
$$sin ^m x= sin ^{2k+1} x = (sin ^2 x)^k sin x = (1-cos^2 x)^ksinx \tag{1}$$
Then we combine the single
sin x with
dx in the integral and set
sin x dx equal to
-d(cos x).
Case 3 If both
m and
n are even in ∫ sin
m x cos
n x dx, we sustitute
$$sin ^2 x = \frac{1-cos 2x}{2} , \; cos ^2 x = \frac{1+cos 2x}{2}\tag{2}$$
to reduce teh integrand to one in lower powers of cos 2x.